Presentation Outline

- Welcome
- Introduction
- Architecture
- Existing Structure
- Problem Statement
- Arch. Breadth
- Structural Depth
- Conclusion
- Questions

Global Village Rochester Institute of Technology Rochester, New York

Christopher VandeLogt B.A.E., Structural Option **Senior Thesis Final Project 2012** Advisor: Dr. Linda Hanagan

Welcome

global village introduction

- \$57.5 million project
- 122,000 square feet
- residential / commercial
- 4 stories + mech. penthouse
- 62.5 feet tall
- march 2009 sept. 2009
- LEED Gold certified •

RIT's Global Village Building 400 Rochester, New York

Christopher VandeLogt

Introduction

Architecture

project team

- architect | arc
- **cm at risk** | the pike company
- **civil** | erdman anthony
- **structural** | lemessurier consultants
- mechanical | ibc engineering
- lighting / electrical | lam partners

Structural Option

Senior Thesis Final

Existing Structure

owner | rochester institute of technology

Welcome

Introduction

RIT's Global Village Building 400 Rochester, New York

Christopher VandeLogt

Architecture

Existing Structure

european-inspired complex

incorporates different themes and materials to represent different regions from around the world unique shape creates an outdoor heated courtyard façade made up of cement fiber board, brick masonry veneer, and aluminum clad windows

Structural Option

Senior Thesis Final

Problem Statement

ground – 3rd floor

Architecture

- 3¹/₄" lightweight concrete on 3" composite metal decking
- typ. beams: W16x31 •

Introduction

- typ. girders: W21x44 •
- typ. bay size: 29' x 32' •
- 6" concrete on-grade slab
- isolated spread and continuous strip footings

RIT's Global Village Building 400

Rochester, New York

Christopher VandeLogt

Existing Structure – Gravity

Problem Statement

- typ.
- 42 @16" typ.

Structural Option

Senior Thesis Final

Arch. Breadth

4th floor - roof

wood framing: 2-2x6 @ 16" wood studs

wood floor construction: 16" LPI Plus

Introduction

ground – 3rd floor

- frames in both directions
- HSS7x7x¹/₂ typ.

RIT's Global Village Building 400

Rochester, New York

Existing Structure – Lateral

Problem Statement

concentrically braced

4th floor - roof

- wood stud shear walls
- 2x4 @ 16" wood studs and sheathing typ.

Christopher VandeLogt

Structural Option

Senior Thesis Final

Arch. Breadth

problem statement

- two different structural systems produces a complicated design and more firms need to be involved
- two different lateral systems used

- structure building entirely out of reinforced concrete through the use of a flat plate system use moment connections to resist lateral loads configure structural system as best as possible not to alter existing architecture or floor plans

RIT's Global Village Building 400

Architecture

Rochester, New York

Problem Statement & Solution

proposed solution

Arch. Breadth

breadth topics

- architecture analyze changes due to new structural system and create new plans if necessary
- construction management study of oncampus residential buildings and cost analysis

Christopher VandeLogt

Structural Option

Senior Thesis Final

Structural Depth

<u>column layout</u>

- column placements chosen based on 3rd floor as to not affect residential floor plan best as possible
- bay widths in between 15' and 25' to be efficient for a flat plate system
- column centers vary a distance no more than 10% of span from column line

*columns highlighted in green denote a required change in floor plan or architecture

RIT's Global Village Building 400

Existing Structure

Rochester, New York

Christopher VandeLogt

Architecture Breadth

Structural Depth

Structural Option

Senior Thesis Final

Conclusion

affected spaces

- 15 areas in total located on 3rd floor, 8 columns affect fan coil unit areas, 6 columns affect bathroom spaces, and 1 column affects corridor space
- entire second floor altered

RIT's Global Village Building 400

Existing Structure

Rochester, New York

Christopher VandeLogt

Architecture Breadth

Structural Depth

Structural Option

Senior Thesis Final

Conclusion

after

Problem Statement Existing Structure

affected spaces

- 15 areas in total located on 3rd floor, 8 columns affect fan coil unit areas, 6 columns affect bathroom spaces, and 1 column affects corridor space
- entire second floor altered

before

RIT's Global Village Building 400

Rochester, New York

Architecture Breadth

Structural Depth

after

Christopher VandeLogt

Structural Option

Senior Thesis Final

Conclusion

Rochester, New York

super-imposed dead loads

- 35 psf: SDL, MEP, partitions, ceiling
- 106 psf: $8\frac{1}{2}$ slab self weight
- 18 psf: roofing

live loads

- 100 psf: 2nd floor •
- 40 psf: 3rd and 4th floors
- 150 psf / 30 psf: mech. penthouse
- 20 psf: roof

- 20" x 20" with (8) #10 bars spaced equally
- ground columns on grid lines F-2 and F-1 analyzed
- panel size: 19.5' x 18' (maximum)
- size controlled due to unbalanced moments by eccentricity of shear
- total compressive force applied: 437 kips
- maximum bending moment: 121 ft-kips

Depth – Gravity Redesign

Conclusion

column size

Christopher VandeLogt

Structural Option

Senior Thesis Final

Questions

slab thickness

Arch. Breadth

- 8¹/₂" thick reinforced slab
- maximum clear span: 18'-4"
- $8\frac{1}{4}$ " calculated using equations from Section 9.5.3 of ACI 318-08 but due to inadequate deflection checks, thickness raised and adequacy verified
- max deflection: .448"
- ACI Table 9.5b limit: .500"

slab reinforcement design

- direction

RIT's Global Village Building 400

Rochester, New York

Depth – Gravity Redesign

direct design method used numbers refer to the amount of #5 bars that are equally spaced over the distance given note: bars spanning in the long direction are placed lower in slab than the bars in the short

Christopher VandeLogt

Structural Option

Senior Thesis Final

Conclusion

Questions

G	$\overline{\mathbf{P}}$		Œ	\mathbf{D}		(0		
Ţ Ţ	<u>↓</u> <u>5</u> 50"	<u>5</u> 50″	<u>5</u> 50‴↓	<u>} 6</u>	<u>5</u> 50‴↓	<u>6</u> 50″↓	<u>↑</u> <u>6</u> 50″	<u>5</u>	<u>_6</u> 50"↓]	Z
¢	$\int_{100''}^{10}$	$\frac{10}{100''}$	$\left \frac{10}{100''} \right $	$\int_{100''}^{\underline{10}}$	$\left \frac{10}{100''}\right $	$\frac{10}{100''}$	$\int_{100''}^{10}$	$\frac{10}{100''}$	10 100"	16'-8"	
	$ \begin{array}{r} $	$\frac{5}{50''} \oint$ $\frac{5}{51''} \oint$	5 50" 5 51"	$ \begin{array}{c} $	$\frac{5}{50''} \uparrow$ $\frac{5}{51''} \uparrow$	$\begin{array}{c} \frac{6}{50''} \\ \hline \frac{6}{51''} \\ \end{array}$	$ \begin{array}{c} $	$\begin{array}{c} \frac{5}{50''} \\ \frac{5}{51''} \\ \end{array}$	6 50″↓ 7 51″↓		2
Î	$\int \frac{9}{102''}$	9 102"	<u>9</u> 102‴↓	$\int \frac{10}{102''}$	$\frac{10}{102''}$	<u>10</u> 102″	$\int \frac{10}{102''}$	$\left \frac{10}{102''}\right $	10 102"	17'-0"	
↓	$\int \frac{5}{51''}$	<u>4</u> 51″↓	5 51"	$\int \frac{6}{51''}$	$\frac{5}{51''}$	$\frac{6}{51''}$		$\frac{5}{51''}$	 51″		/
ţ	$\oint \frac{6}{51''}$	<u>5</u> 51″↓	<u>6</u> 51"↓	$\oint \frac{7}{57''}$	<u>5</u> 57″↓	$\frac{7}{57''}$	<u>7</u> 58"	<u>5</u> 58″↓	<u>7</u> 58"↓		
¢	$\int \frac{11}{128''}$	$\frac{11}{128''}$	<u>11</u> 128″↓	$\int \frac{10}{116''}$	$\frac{10}{116''}$	$\frac{10}{116''}$	$\int_{114^{''}}^{10}$	$\frac{10}{114''}$	10 114"	19'-2"	
Ĵ [<u> </u>	<u>4</u> 51"↓	<u>5</u> 51″	<u>↑ 7</u> 57″	<u>5</u> 57‴↓		<u>↑ 7</u> 58″	<u>5</u> 58‴↓	 58″↓		/
/	/	16'-10"	,	·	19'-0"			20'-0"		4	

Arch. Breadth

RIT's Global Village Building 400

Rochester, New York

Depth – Gravity Redesign

Christopher VandeLogt

Structural Option

Senior Thesis Final

Questions

Arch. Breadth

ETABS model

- columns modeled as found and slab modeled as a rigid diaphragm with the weight of each floor
- 0.7 I_a multiplied applied to columns • according to Section 10.10.4.1 of ACI 318-08

- rectangular prism with dimensions 223' x 53' x58' same ground to roof height on each side of
- building
- concrete beams were modeled to represent moment connections

RIT's Global Village Building 400

Rochester, New York

Depth – Lateral Redesign

Conclusion

assumptions

Christopher VandeLogt

Structural Option

Senior Thesis Final

Questions

Arch. Breadth

----- 58

— 37'-4'

— 26'-8'

____ 1

<----- V = 361 k

M = 13904 ft-k

Wind: X-Axis Loads

- ASCE Standard 7-10 used controlling case in x-direction: seismic controlling case in y-direction: wind load case 2

Rochester, New York

RIT's Global Village Building 400

Depth – Lateral Redesign

Conclusion

eight different load cases were input into ETABS

Christopher VandeLogt

Structural Option

Senior Thesis Final

Questions

Arch. Breadth

lateral drift

- seismic drift check: .015h_{sx}
- wind story drift check: h_{sx}/400

Story Drifts (in)											
Loval		Seismic		Wind							
Level	$\Delta_{X-Frame}$	$\Delta_{Y-Frame}$	$\Delta_{Allowable}$	$\Delta_{X-Frame}$	$\Delta_{\text{Y-Frame}}$	$\Delta_{Allowable}$					
Roof	0.079	0.091	1.800	0.019	0.114	0.300					
Pent	0.141	0.160	1.921	0.031	0.189	0.320					
4th	0.201	0.223	1.921	0.046	0.267	0.320					
3rd	0.272	0.300	2.279	0.066	0.378	0.380					
2nd	0.178	0.193	2.520	0.046	0.261	0.420					
Total Drift	0.871	0.967	10.441	0.208	1.209	1.740					
	v ok	v ok		v ok	v ok						

RIT's Global Village Building 400

Rochester, New York

Depth – Lateral Redesign

Conclusion

overturning moment

- wind loads controlled creating a ft-kips
- kips

Christopher VandeLogt

Structural Option

Senior Thesis Final

Questions

maximum overturning moment of 14,032

resisting moment of building: 254,445 ft-

RIT's Global Village Building 400

Rochester, New York

Christopher VandeLogt

Lateral Load Moments (ft-k) Floor **Y-Direction** X-Direction 2nd 96 68 3rd 118 64 4th 106 43 48 19 Pent

- - moment numbers refer to the amount of #5 bars that are equally spaced over the distance given

Depth – Lateral Redesign

Problem Statement

lateral load moments

Arch. Breadth

found using ETABS model

moment connection design

lateral load moments added to unbalanced moment transferred by flexure due to gravity loads required reinforcement analyzed using total

Conclusion

Structural Option

Senior Thesis Final

Questions

Arch. Breadth

RIT's Global Village Building 400

Rochester, New York

Depth – Lateral Redesign

Conclusion

Christopher VandeLogt

Structural Option

Senior Thesis Final

Questions

Structural Depth

advantages

- building more durable and lower maintenance costs
- improved fire rating and sound proofing
- stiffer structure produced
- less construction waste
- fewer firms involved

due to budget constraints, this system would not be permitted due to high upfront costs

RIT's Global Village Building 400

Arch. Breadth

Rochester, New York

Christopher VandeLogt

Conclusion

Questions

overall

disadvantages

- triple the existing structure cost
- increased field labor

Structural Option

Senior Thesis Final

structure cost was estimated at around

Structural Depth

Conclusion

- James Yarrington and Ted Weymouth (RIT) David Manoz (PSU)
- Dr. Linda Hangan
- Dr. Ali Memari
- Dr. Andrés Lepage
- **Professor Holland**
- **Professor Parfitt**
- Rest of the AE faculty
- Family and friends

RIT's Global Village Building 400 Rochester, New York

Christopher VandeLogt

Questions

acknowledgements

Structural Option

Senior Thesis Final

RIT's Global Village Building 400 | Rochester, New York

Christopher VandeLogt

Appendix

Structural Option

Senior Thesis Final

RIT's Global Village Building 400

Rochester, New York

Appendix

Christopher VandeLogt

Structural Option

Senior Thesis Final

RIT's Global Village Building 400 | Rocheste

Rochester, New York

Christopher VandeLogt

Appendix

Structural Option

Senior Thesis Final

RIT's Global Village Building 400

Rochester, New York

Appendix

Christopher VandeLogt

Structural Option

Senior Thesis Final

Variable	Value	Reference	Equi	valent Late	al Force Procedure
l _e =	1.25	Table 1.5-2		0.02	Table 12.8-2: Other
S _s =	0.21	USGS	x=	0.75	Structures
S1=	0.06	USGS	h _n =	62.5	ft
ite Class:	с	Geotech Report	T _a =	0.445	sec
F _a =	1.2	Table 11.4-1	C _u =	1.7	Table 12.8-1
F _v =	1.7	Table 11.4-2	Т=	0.756	sec
S _{m s} =	0.252		k=	1.128	
S _{m1} =	0.102		C _S =	0.070	
S _{DS} =	0.168		C _{S,max} =	0.037	
S _{D1} =	0.068		C _{S,min} =	0.010	
Category:	в	Table 11.6-1,2			
		Table 12.2-1: Ordinary RC	Use C _s =	0.037	
R=	3	Moment Frame			
T _L =	6 sec	Fig 22-12			

RIT's Global Village Building 400 Rochester, New York

Christopher VandeLogt

Appendix

Seismic Forces

	Building C											
Floor	Floor Weight, w _x (k)	Story Height, h _x (ft)	w _x h _x ^k	C _{vx}	Story Force (k)	Story Shear (k)	Overturning Moment (k-ft)					
Ground	2345	0.0	0.00	0.00	0.0	361.1	0.0					
2nd	1760	14.0	89799.12	0.09	33.8	361.1	473.2					
3rd	1760	26.7	185685.30	0.19	69.9	327.3	1863.3					
4th	1698	37.3	260630.10	0.27	98.1	257.4	3662.1					
Pent	1735	48.0	354584.69	0.37	133.5	159.3	6406.4					
Roof	335	58.0	68682.22	0.07	25.9	25.9	1499.4					
Sum:	9632		959381.4	1.00	361.1							
				√ ok	v ok							
	Base Shea	r (V=C _s W) =	361	Total	Overturning M	oment =	13904					

Structural Option

Senior Thesis Final

Flat Plate With No Edge Beams (By Direct Design Method)

RIT's Global Village Building 400

Rochester, New York

Christopher VandeLogt

Appendix

Column Strength / Strength Interaction Curve

P	ure Compress	sion				Bala	nced-Strain St	rength		
P _o =	1915.7	kips	ε _γ =	0.00207				β1=	0.85	
þΡ _o =	1245.2	kips	C=	10.36	in	< h	ОК	A _s =	1.227	in ²
			d ₁ =	2.50	in			f _{s1} =	60.00	ksi
	Pure Tensio	n	d ₂ =	10.00	in			f _{s2} =	3.00	ksi
T _o =	-589.0	kips	d ₃ =	17.50	in			f _{s3} =	-60.00	ksi
φT _o =	-530.1	kips	$d_4 =$		in			f _{s4} =		ksi
			d ₅ =		in			f _{s5} =		ksi
Pure B	ending (Solve	by Hand)	d ₆ =		in			f _{s6} =		ksi
			d ₇ =		in			f _{s7} =		ksi
			d _e =		in			f _{sB} =		ksi
			P _b =	606.0	kips			M _b =	555.4	ft-k
			φP ₆ =	393.9	kins			φM.=	361.0	ft-k

	Column BD			Column BE				Column BF	
t _{col,1dir} =	20	in	t _{col,1dir} =	20	in		t _{col,1dir} =	20	in
t _{col,2dir} =	20	in	t _{col,2dir} =	20	in		t _{col,2dir} =	20	in
A _T =	608.731779	ft ²	A _T =	1295.82878	ft ²		A _T =	1410.357	ft ²
A _{T,roof} =	152.182945	ft ²	A _{T,roof} =	323.957195	ft ²		A _{T,roof} =	352.58925	ft ²
K _{LL} A _T =	2434.92712	ft ²	$K_{LL}A_T =$	5183.31512	ft ²		$K_{LL}A_T =$	5641.428	ft ²
K _{LL} A _T >	400ft ²	ОК	K _{LL} A _T	> 400ft ²	ОК		K _{LL} A _T >	400ft ²	ОК
α=	0.55		α=	0.46			α=	0.45	
α _{roof} =	1.00		α _{roof} =	0.88			α _{roof} =	0.85	
	Column BD			Column BE			_	Column BF	
	Column PD			Column PE				Column RE	
M _{ETABS,long} =	Column BD 96	ft-k	M _{ETABS,long} =	Column BE 96	ft-k		M _{ETABS,long} =	Column BF 96	ft-k
M _{ETABS,long} = M _{ETABS,short} =	Column BD 96 68	ft-k ft-k	M _{ETABS,long} = M _{ETABS,short} =	Column BE 96 68	ft-k ft-k	Т	M _{ETABS,long} = M _{ETABS,short} =	Column BF 96 68	ft-k ft-k
M _{ETABS,long} = M _{ETABS,short} = M _{unb,long} =	Column BD 96 68 31.7	ft-k ft-k ft-k	M _{ETABS,long} = M _{ETABS,short} = M _{unb,long} =	Column BE 96 68 27.3	ft-k ft-k ft-k		M _{ETABS,long} = M _{ETABS,short} = M _{urb,long} =	Column BF 96 68 25.0	ft-k ft-k ft-k
M _{ETABS,long} = M _{ETABS,short} = M _{unb,long} = M _{unb,short} =	Column BD 96 68 31.7 13.3	ft-k ft-k ft-k ft-k	METABS,long= METABS,short= Munb,long= Munb,short=	Column BE 96 68 27.3 27.5	ft-k ft-k ft-k ft-k ft-k		M _{ETABS,long} = M _{ETABS,short} = M _{unb,short} = M _{unb,short} =	Column BF 96 68 25.0 29.9	ft-k ft-k ft-k ft-k
M _{ETABS,long} = M _{ETABS,short} = M _{unb,long} = M _{unb,short} = P _L =	Column BD 96 68 31.7 13.3 44.8	ft-k ft-k ft-k ft-k kips	M _{ETABS,long} = M _{ETABS,short} = M _{unb,long} = M _{unb,short} = P _L =	Column BE 96 68 27.3 27.5 92.9	ft-k ft-k ft-k ft-k ft-k kips		M _{ETABS,long} = M _{ETABS,short} = M _{unb,long} = M _{unb,short} = P _L =	Column BF 96 68 25.0 29.9 100.8	ft-k ft-k ft-k ft-k kips
$M_{ETABS, long} = M_{ETABS, short} = M_{unb, long} = M_{unb, short} = P_{L} = P_{D} =$	Column BD 96 68 31.7 13.3 44.8 105.9	ft-k ft-k ft-k kips kips	$\begin{split} M_{ETABS,shorg} = & \\ M_{eTABS,short} = & \\ M_{unb,long} = & \\ M_{unb,short} = & \\ P_L = & \\ P_D = & \end{split}$	Column BE 96 68 27.3 27.5 92.9 206.0	ft-k ft-k ft-k ft-k kips kips		M _{ETABS.long} = M _{ETABS.short} = M _{unb.short} = P _L = P _D =	Column BF 96 68 25.0 29.9 100.8 222.7	ft-k ft-k ft-k ft-k kips kips
$\begin{aligned} &\Lambda_{ETABS, long} = \\ &\Lambda_{ETABS, short} = \\ &M_{unb, long} = \\ &M_{unb, short} = \\ &P_{L} = \\ &P_{D} = \\ &P_{D} = \\ &P_{S, Lr} = \end{aligned}$	Column BD 96 68 31.7 13.3 44.8 105.9 7.7	ft-k ft-k ft-k ft-k kips kips kips	$\label{eq:metric} \begin{split} M_{\text{ETABS,kong}} &= \\ M_{\text{ETABS,short}} &= \\ M_{\text{unb,long}} &= \\ M_{\text{unb,short}} &= \\ P_{\text{L}} &= \\ P_{\text{D}} &= \\ P_{\text{D},\text{i}} &= \\ P_{\text{S},\text{i}} &= \\ \end{split}$	Column BE 96 68 27.3 27.5 92.9 206.0 15.7	ft-k ft-k ft-k ft-k kips kips kips		$\begin{split} M_{\text{ETABS,long}} = & \\ M_{\text{ETABS,short}} = & \\ M_{\text{urb,long}} = & \\ M_{\text{urb,short}} = & \\ P_{\text{L}} = & \\ P_{\text{D}} = & \\ P_{\text{D},\text{I}} = & \\ \end{array}$	Column BF 96 68 25.0 29.9 100.8 222.7 16.8	ft-k ft-k ft-k ft-k kips kips kips
M _{ETABS,long} = M _{ETABS,short} = M _{unb,short} = M _{unb,short} = P _L = P _D = P _{S,Lr} = M _{u,long} =	Column BD 96 68 31.7 13.3 44.8 105.9 7.7 127.7	ft-k ft-k ft-k kips kips kips	$\begin{split} M_{\text{ETABS,long}} = & \\ M_{\text{ETABS,short}} = & \\ M_{\text{unb,long}} = & \\ M_{\text{unb,short}} = & \\ P_{\text{L}} = & \\ P_{\text{D}} = & \\ P_{\text{D}} = & \\ P_{\text{S}, \text{Ir}} = & \\ M_{\text{u,long}} = & \end{split}$	Column BE 96 68 27.3 27.5 92.9 206.0 15.7 123.3	ft-k ft-k ft-k ft-k kips kips kips ft-k		$\begin{split} M_{\text{ETABS,long}} = & \\ M_{\text{ETABS,short}} = & \\ M_{unb,long} = & \\ M_{unb,short} = & \\ P_{L} = & \\ P_{D} = & \\ P_{S,lr} = & \\ M_{u,long} = & \end{split}$	Column BF 96 68 25.0 29.9 100.8 222.7 16.8 121.0	ft-k ft-k ft-k ft-k kips kips kips ft-k
$M_{ETABS,long}$ $M_{ETABS,short}$ $M_{unb,long}$ $M_{unb,short}$ P_L P_D P_D $P_{S,lr}$ $M_{u,long}$ $M_{u,short}$ $M_{u,short}$	Column BD 96 68 31.7 13.3 44.8 105.9 7.7 127.7 81.3	ft-k ft-k ft-k kips kips kips ft-k ft-k	eq:massessessessessessessessessessessessesse	Column BE 96 68 27.3 27.5 92.9 206.0 15.7 123.3 95.5	ft-k ft-k ft-k kips kips kips ft-k ft-k		$\begin{split} M_{\text{ETABS,long}} = & \\ M_{\text{ETABS,short}} = & \\ M_{urb,Jong} = & \\ M_{unb,short} = & \\ P_{\text{L}} = & \\ P_{\text{D}} = & \\ P_{\text{S},lx} = & \\ M_{u,long} = & \\ M_{u,short} = & \\ \end{split}$	Column BF 96 68 25.0 29.9 100.8 222.7 16.8 121.0 97.9	ft-k ft-k ft-k kips kips kips ft-k ft-k

	olumn BD			Column BE			Colum	n BF
t _{col,1dir} =	20	in	t _{col,1dir} =	20	in	t _{col,1} ,	_{dir} = 20) in
t _{col,2dir} =	20	in	t _{col,2dir} =	20	in	t _{col,2}	_{dir} = 20	in in
A _T = 60	08.731779	ft ²	A _T =	1295.82878	ft ²	A _T	= 1410.3	357 ft ²
A _{T,roof} = 15	52.182945	ft ²	A _{T,roof} =	323.957195	ft ²	A _{T,ro}	of= 352.58	3925 ft ²
K _{LL} A _T = 24	434.92712	ft ²	K _{LL} A _T =	5183.31512	ft ²	KLLA		428 ft ²
$K_{LL}A_T > 4$	400ft ²	ОК	K _{LL} A _T >	400ft ²	ОК	κ	$_{L}A_{T} > 400 ft^{2}$	OK
α=	0.55		α=	0.46		α	= 0.4	5
α _{roof} =	1.00		α _{roof} ≕	0.88		απο	_{of} = 0.8	5
Co	olumn BD			Column BE			Colum	n BF
NACIONALIZZA DE C	0.5	er. 1	10 · · · · · · · · · · · · · · · · · · ·	0.0				6.1
M _{ETABS, long} =	96	ft-k	M _{ETABS,long} =	96	ft-k	M _{ETABS}	_{i,long} = 96	ft-k
M _{ETABS,long} = M _{ETABS,short} =	96 68	ft-k ft-k	M _{ETABS,kong} = M _{ETABS,short} =	96 68	ft-k ft-k	M _{ETABS}	i,long= 96 short= 68	i ft-k i ft-k
M _{ETABS,long} = M _{ETABS,short} = M _{unb,long} =	96 68 31.7	ft-k ft-k ft-k	M _{ETABS,kong} = M _{ETABS,short} = M _{unb,long} =	96 68 27.3	ft-k ft-k ft-k	M _{ETABS} M _{ETABS} M _{unb} j	ilong= 96 short= 68 long= 25.1	ft-k ft-k 0 ft-k
M _{ETABS,long} = M _{ETABS,short} = M _{unb,long} = M _{unb,short} =	96 68 31.7 13.3	ft-k ft-k ft-k ft-k	M _{ETABS,short} = M _{ETABS,short} = M _{unb,torg} = M _{unb,short} =	96 68 27.3 27.5	ft-k ft-k ft-k ft-k	M _{ETABS} M _{ETABS} M _{unb} ,	long= 96 short= 68 long= 25.1 hort= 29.1	ft-k ft-k ft-k ft-k ft-k
M _{ETABS,long} = M _{ETABS,short} = M _{unb,long} = M _{unb,short} = P _L =	96 68 31.7 13.3 44.8	ft-k ft-k ft-k ft-k kips	METABS,short= METABS,short= Munb,long= Munb,short= PL=	96 68 27.3 27.5 92.9	ft-k ft-k ft-k ft-k kips	M _{ETABS} M _{ETABS} M _{unb,} M _{unb,} s	i,long= 96 ,short= 68 long= 25.4 hort= 29.5 = 100.	ft-k ft-k ft-k ft-k 9 ft-k .8 kips
METABS,long= METABS,short= Munb,short= PL= PD=	96 68 31.7 13.3 44.8 105.9	ft-k ft-k ft-k ft-k kips kips	M _{ETABS,short} = M _{ETABS,short} = M _{unb,short} = P _L = P _D =	96 68 27.3 27.5 92.9 206.0	ft-k ft-k ft-k ft-k kips kips	M _{ETABS} M _{ETABS} M _{unb,s} P _L P _D	i,long= 96 i,short= 68 long= 25.1 hort= 29.1 = 100. = 222.	ft-k ft-k ft-k ft-k ft-k ft-k ft-k ft-k
METAAS, long= METABS, short= Munb, long= Munb, short= PL= PD= PS, Lr=	96 68 31.7 13.3 44.8 105.9 7.7	ft-k ft-k ft-k ft-k kips kips kips	$\begin{split} M_{ETABS,short} = & \\ M_{eTABS,short} = & \\ M_{unb,short} = & \\ M_{unb,short} = & \\ P_L = & \\ P_D = & \\ P_{S,tr} = & \end{split}$	96 68 27.3 27.5 92.9 206.0 15.7	ft-k ft-k ft-k ft-k kips kips kips	M _{ETABS} M _{ETABS} M _{unb,s} P _L P _D P _{5,t}	$\frac{1}{2} \log \frac{1}{2} = \frac{1}{2} \log \frac{1}{2} + \frac{1}$	ft-k ft-k 0 ft-k 9 ft-k .8 kips .7 kips 8 kips
$\begin{split} & M_{\text{ETABS,long}^{\text{E}}} \\ & M_{\text{ETABS,short}^{\text{E}}} \\ & M_{unb,long}^{\text{E}} \\ & M_{unb,short}^{\text{E}} \\ & P_{L^{\text{E}}} \\ & P_{D^{\text{E}}} \\ & P_{D^{\text{E}}} \\ & P_{S,L^{\text{E}}} \\ \end{split}$	96 68 31.7 13.3 44.8 105.9 7.7 127.7	ft-k ft-k ft-k kips kips kips ft-k	$M_{ETABS, shore} = M_{eTABS, shore} = M_{enh, long} = M_{unb, short} = P_{L} = P_{D} = P_{S, tr} = M_{u, long} =$	96 68 27.3 27.5 92.9 206.0 15.7 123.3	ft-k ft-k ft-k ft-k kips kips kips ft-k	M _{ETABS} M _{eTABS} M _{unb,3} P _L ² P _D P _{S,1}	Jong= 96 short= 68 long= 25. hort= 29. = 100. = 222. r= 16. ng= 121.	ft-k ft-k ft-k 9 ft-k 8 kips 8 kips 8 kips 0 10 11 12
M_TTABS, long= M_TABS, short = M_unb, long = M_unb, short = P_L = P_D = P_S, i,r = M_u, long = M_u, short =	96 68 31.7 13.3 44.8 105.9 7.7 127.7 81.3	ft-k ft-k ft-k kips kips kips ft-k ft-k	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	96 58 27.3 27.5 92.9 206.0 15.7 123.3 95.5	ft-k ft-k ft-k ft-k kips kips kips ft-k ft-k	METABS METABS Munite, Munite, PL PD PS, I Mu,JC Mu,JC	Jong= 96 short= 68 long= 25. hort= 29. = 100. = 222. r= 16. ng= 121. err= 97.	ft-k ft-k 0 ft-k 9 ft-k .8 kips .7 kips 8 kips .0 ft-k .9 ft-k

Structural Option

Senior Thesis Final

		Interior Colum	n BF (Reinforcement Needed)		
t _{col 1dir} =	20	in	b _o =	108.50	in
t _{col 2dir} =	20	in	b ₁ =	27.13	in
M _{u long} =	41.7	ft-k	b ₂ =	27.13	in
M _{u.short} =	49.9	ft-k	V _{c.1} =	195.6	kips
2 2 Manual Anna A			V _{c,2} =	293.4	kips
			V _{c.3} =	226.2	kips
V _u =	116.2	kips	φV _c =	146.7	kips
					(79) · ·

RIT's Global Village Building 400

Rochester, New York

Appendix

Christopher VandeLogt

Structural Option

Senior Thesis Final

	Column Stri	ip	Middle Strip				
l _{g,col} =	5552	in ⁴	I _{g,mid} =	7062	in ⁴		
w _D =	1.724	k/ft	w _D =	0.918	k/ft		
w _L =	1.221	k/ft	w _L =	0.650	k/ft		
$\Delta_{D,max} =$	0.062	in	∆ _{D,max} =	0.014	in		
∆i,max=	0.081	in	∆i,max=	0.018	in		
long-term=	0.246	in	∆ _{long-term} =	0.054	in		

Interior Panel I₃ - I₄

Assume:

∆_L= ACI Limit=

∆_T= ACI Limit=

RIT's Global Village Building 400

Rochester, New York

Christopher VandeLogt

Appendix

Deflection Check

25 % of w_L is sustained

- 90 % of immediate deflection due to dead load occurs before partitions are installed
- x Check if: Nonstructural attached elements will be damaged by excessive deflection

	0.099	in	
-	0.667	in	OK
0	Check Total	Load Deflect	ion
	0.406	in	
=	0.500	in	OK

						_
1	Column Stri	ip	1	p		
=	5552	in ⁴	l _{g,mid} =	5834	in ⁴	_
-	1.724	k/ft	w _D =	0.872	k/ft	
-	1.221	k/ft	w _L =	0.618	k/ft	
=*	0.050	in	∆ _{D,max} =	0.025	in	
*=	0.066	in	∆ _{L,max} =	0.033	in	
	0.201	in	$\Delta_{long-term} =$	0.100	in	

Exterior Panel I1 - I2

ОК

ACI Limit= 0.475 in

	Column Strip	Middle Strip			
l _{g.col} =	5552	in ⁴	l _{g,mid} =	6448	in ⁴
w _D =	1.724	k/ft	w _D =	0.872	k/ft
w_=	1.221	k/ft	w_=	0.618	k/ft
$\Delta_{D,max}=$	0.050	in	∆ _{D,max} =	0.014	in
$\Delta_{L,max}=$	0.066	in	∆ _{L,max} =	0.026	in
∆ _{long-term} =	0.201	in	$\Delta_{\text{long-term}} =$	0.062	in
		Check Live	Load Deflection		
	Δ _L =	0.092	in		
	ACI Limit=	0.633	in	ОК	
		Check Total	Load Deflection		
	∆ ⊤ =	0.361	in		
	ACI Limit=	0.475	in	OK	

Structural Option

Senior Thesis Final

	Column Strip	1		Middle Stri	р
l _{g.col} =	5859	in ⁴	l _{g,mid} =	5884	in ⁴
w _D =	1.859	k/ft	w _D =	0.880	k/ft
w_=	1.316	k/ft	w _L =	0.623	k/ft
$\Delta_{D,max}=$	0.053	in	∆ _{D,max} =	0.030	in
$\Delta_{L,max} =$	0.070	in	$\Delta_{L,max} =$	0.039	in
∆ _{long-term} =	0.212	in	$\Delta_{\text{tong-term}} =$	0.119	in
		0 100	in		-
		Check Live	Load Deflection		-
	Δ_{L}	0.109			
	ACI Limit=	0.667	in	ОК	
	ACI Limit=	0.667 Check Total	in Load Deflection	ОК	
	ACI Limit=	0.667 0.667 Check Total 0.448	in Load Deflection	ОК	_

Exterior Panel I₁ - I₄

super-imposed dead loads

- 35 psf: SDL, MEP, partitions, ceiling
- 106 psf: 8¹/₂"slab self weight

live loads

• 100 psf: 2nd floor

RIT's Global Village Building 400 | Roc

Rochester, New York

preliminary sizes and reinforcement given

Appendix

stairwell corner design

Christopher VandeLogt

Structural Option

Senior Thesis Final

B1: b=14", h=20" with (3) #9 bars B2: b=18", h=25" with (5) #9 bars G2: b=12", h=25" with (3) #9 bars